小学数学方程的教案7篇

时间:2025-01-29 作者:betray

教案中应列出所需的教学资源,避免上课时出现材料准备不足的情况,教案的制定要关注到课程的延续性,以实现知识的系统传递,下面是合同范文网小编为您分享的小学数学方程的教案7篇,感谢您的参阅。

小学数学方程的教案7篇

小学数学方程的教案篇1

教学内容

解方程:教材p69例4、例5。

教学目标

1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。

2.进一步掌握解方程的书写格式和写法。

3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

教学重点

理解在解方程过程中,把一个式子看作一个整体。

教学难点

理解解方程的方法。

教学过程

一、导入新课

我们上节课学习了解方程,这节课我们来继续学习。

二、新课教学

1.教学例4。

师:(出示教材第69页例4情境图)你看到了什么?

生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。

师:你能根据图列一个方程吗?

生:3x+4=40。

师:你是怎么想的?

生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。

师:说得好,你能解这个方程吗?

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

生:先算出3个铅笔盒一共多少支,再加上外面的4支。

师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。

让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。

2.教学例5。

师:(出示教材第69页例5)你能够解这个方程吗?

生1:我们可以参照例4的方法,先把x-16看作一个整体。

学生解方程得x=20。

生2:我们也可以用运算定律来解。

师:2x-32=8运用了什么运算定律?

生:运用了乘法分配律。然后把2x看作一个整体。

学生解方程得x=20。

师:你的解法正确吗?你如何检验方程是否正确?

生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。

三、巩固练习

教材第69页“做一做”第1、2题。

第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。

这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。

四、课堂小结

1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

五、布置作业

教材第71页“练习十五”第6、8、9.题。

小学数学方程的教案篇2

教学目标:

1、让学生在解决实际问题的过程中,理解并掌握形如ax±bx=c的方程的解法,会列上述方程解决两步计算的实际问题。

2、让学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

3、让学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。

教学重点:

正确分析题中数量间的相等关系,并列出方程,提高用方程解答实际问题的能力。

教学难点:

合理地用字母或含有字母的式子表示题中两个未知的数量。

教学过程:

一、联系生活,引出问题

1、谈话导入:同学们,上节课我们一起游览了我国有名的历史文化名城——西安,在那里了解了闻名遐迩的古代建筑——大雁塔和小雁塔。今天我们要去北京的颐和园游览。

(出示颐和园的图片)指出:这是颐和园,坐落在我国的首都北京,它是清代皇家的园林,为我国古典园林之首,也是世界著名园林之一。你知道它的占地面积是多少吗?(出示例2的文字部分:北京颐和园占地290公顷,其中水面面积大约是陆地面积的3倍。)

2、提出问题:你从题目中知道了些什么?你还想知道些什么?

3、出示问题:颐和园的陆地和水面大约各有多少公顷?

颐和园的陆地比水面大约多多少公顷?

颐和园的水面比陆地大约少多少公顷?

指出:下面两个问题要在解决第一个问题的基础上才可以完成。下面我们就一起来探讨第一个问题。

二、探索交流,解决问题

(一)继续教学例题

1、学习用线段图分析数量关系

启发:颐和园的水面面积与陆地面积之间有什么关系?为了看得更加直观和清楚,我们可以用什么样的方法来表示题目中的水面面积与陆地面积之间的关系呢?(引导学生用线段图的方法表示题中的数量关系)

提出要求:请同学们在课练本上试着画一画。(师巡视,注意辅导有困难的学生)

2、找出题中的等量关系

提问:根据题中的哪一句话可以找出数量间的相等关系?请同桌两个人互相说一说。

指名口答。

根据学生口答完成板书:

颐和园水面面积+陆地面积=颐和园的占地面积

3、尝试解答

提问:根据这个数量关系我们可以怎样列方程?请同学们试着列出方程。

板书:x+3x=290

观察:这个方程与我们前面所学习的方程有什么不同之处?同学们会解吗?请大家试试看。

交流:谁来说说你是怎样解的?(当学生说出首先计算“x+3x=4x”时追问:这样做有什么依据?)

小结:我们在解答这个方程时,利用乘法分配律,首先将方程化简,变成一般方程,然后再解。

4、进行检验

启发:如何知道我们求出的这个解是否正确呢?

你准备怎样检验呢?

学生口答,师板书检验过程:

72.5+217.5=290(公顷)

217.5÷72.5=3

(也可以把求出的解代入原方程进行检验,并分别看3x的值是否等于217.5,x+3x的和是否等于290。)

小学数学方程的教案篇3

教学内容:

数学书p58-p59及“做一做”,练习十一第5-7题。

教学目标:

1、 结合具体图例,根据等式不变的规律会解方程。

2、 掌握解方程的格式和写法。

3、 进一步提高学生分析、迁移的能力。

教学重难点:

掌握解方程的方法。

教学过程:

一、导入新课

二、新知学习

(一) 教学例1

出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

化简,即得: x=6

这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

板书:方程左边=x+3=6+3=9=方程右边

所以, x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二) 教学例2

利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

展示、订正。

通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

(三) 反馈练习

1、 完成“做一做”的第1题。

2、 试着解方程:x-2.4=6 x÷9=0.7 (强调验算)

三、课堂小结。

这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

四、作业:练习十一5—7题。

解方程教学反思

在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。

1、在具体情境中理解算理,经历代数的过程。

本节课属于典型的计算课,所以算理与算法是二条主线,今天的算法主要是突破学生原有的认知,能够利用天平的原理来解方程,所以理解算理,让学生体验到解方程只要使天平的一边剩下一个未知数,但要在这个变化中必须使天平保持平衡,可以通过在天平的左右二边同时减去相同的数是本节课的重点。我通过创设情境,让学生来领悟算理,突显出本节课的重点。

2、在直观操作中掌握方法,发展数学素养。

在本节课中,通过充分的直观,利用学生熟悉的素材,力图把方程建构于天平之中,在学生的头脑中建立深刻的模像。同时,在让学生用自己的生活,用自己的操作解释、验证中发展学生的数学素养。

3、困惑:纵观学生的起点,他们已经具有丰富的生活经验与知识背景来解简单的方程,所以在教学中运用“逆运算”来解方程对于采用天平的原理来解方程造成了相当的冲突,部分学生虽然对于运用天平原理来解方程已经十分理解,但他们还是不愿意用这种方法,主要的原因是他们体验不到这种方法的优越性,所以如何在本节课中让学生体验到天平原理的优越性,从而自愿的采用这种方法,没有好的策略?

小学数学方程的教案篇4

一、设计理念:

随着学生学习知识的迁移,让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,既巩固了小学基础知识,又为初中教学打下坚实的基础。

二、教学目标:

知识与技能:让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,运用相关规律,熟练的进行解方程计算。

过程与方法:让学生通过体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。

情感态度与价值观:运用“勾漏”双向四步教学法,适当创设教学情境,激发学生的学习兴趣。

三、教学重、难点:

教学重点:让学生在让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,掌握各类解方程的一些规律,运用相关规律,熟练的进行解方程计算。

教学难点:让学生体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。

四、教学方法:

“勾漏”双向四步教学法;观察法、比较法、归纳法。

五、教学准备:

教学课件

六、教学过程

(一)、勾人入境:

同学们,利用等式的性质我们学会了解方程,其实上,熟练后,我们可以不用写得那么麻烦,三言两语就可以轻松地解方程了啊!想学吗?

(二)、漏知互学:

我们先按运算符号把方程分成四大块:一、加法方程,二、乘法方程;三、减法方程;四、除法方程

先来看第一大块的加法方程

186+x=200

用等式的性质这样解:

186+x=200

解:x+186—186=200—186

x=14

熟练后可以这样解:

186+x=200

解:x=200—186

x=14

有什么规律呢?先看符号(+——--符号相反)再看数字(数字顺序也相反),那合起来说就是:加法方程,数符相反。有趣吗?

现在我们再看第二大块的乘法方程

36×x=108

用等式的性质这样解:

36×x=108

解:x×36÷36=108÷36

x=3

熟练后可以这样解:

36×x=108

解:x=108÷36

x=3

师:他们又有什么规律呢?(课件展示)哦真聪明!乘法方程与加法方程的规律一样,数字顺序和运算符号都相反了,所以我们把乘法方程与加法方程合在一起称为:乘加方程,数符相反。明白了吗?记住了吗?

现在我们再来看第三大块,减法方程:

x—36=12

用等式的性质这样解:

x—36=12

解:x—36+36=12+36

x=48

熟练后可以这样解:

x—36=12

解:x=12+36

x=48

那么它们又有什么规律呢?先看未知数x都在减号前,接下来的运算符号都用加法,那么是不是所有的减法方程都是用加法呢?别急,请看:

108—x=60

用等式的性质可以这样解:

108—x=60

解:108—x+x=60+x

108 =60+x

60+x =108

x+60-60 =108-60

x=48

熟练后可以这样解:

108—x=60

解:x=108—60

x=48

同学们,比较一下,这两题减法方程与上面两题有什么不同呢?对,未知数x都在减号后面,运算符号都是用减法,那么我们就可以把这两张种减法方程合并起来说:减法方程,前加后减。未知数x在减号前用加法,未知数x在减号后,用减法。

接下来我们再来学习第四块,除法方程:

x÷12=5

用等式的性质可以这样解:

x÷12=5

解:x÷12×12=5×12

x=60

熟练后可以这样解:

x÷12=5

解:x=5×12

x=60

同学们,你发现了什么?对,眼睛真厉害!未知数x在除号前,解完这道题,谁发现,有没有似曾相识的感觉:与减法一样

1、未知数x在除号前面

2、都用乘法

3、数字没有相反。怎么办,对,先算完另外一种情况(x在除号后的)再说,那么请开始吧。

48÷x=3

用等式的性质可以这样解:熟练后可以这样解:

48÷x=3 48÷x=3

解:48÷x×x=3×x解:x=48÷3

48=3×x x=16

3×x=48

x=48÷3

x=16

仔细观察比较,你发现了什么?解除法方程的规律你找到了吗?1、未知数x在除号后面,2、都用除法,3、数字没有相反。以上说明在除号前后的计算方法不一样,那么它的规律要根据x在除号前后来判断,x在除号前用乘法,x在除号后用除法,从而得出他的规律是除法方程,前乘后除,它和减法有类似感。

(三)、流程对测:

小组内各出加减乘除的方程各一条,然后交换计算,看谁算得又快又准确。

小组开始探究,教师巡逻指导

(四)、结课拓展:请同学们说说这节课你学到了什么?

小学数学方程的教案篇5

一、学习内容分析

方程的意义选自人教版五年级上册,主要内容是方程的定义,属于数与代数领域。方程的意义是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。

教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。

二、学习者分析

五年级的学生已经掌握了整数、小数、分数的认识,能够熟练计算整数、小数四则运算。学生对数与代数的知识和经验已经积累到相当的程度,需要对初一年级的数学知识和数学思想进行学习。但是方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。

三、教学过程

一、创设情境,引入课题

1.课件呈现,认识天平:

?出示天平】同学们,见过它吗?你们知道怎么用吗?

?情境】

?师生活动】学生回答,教师总结

?归纳】左右平衡,也就说明左右相等了

?追问】用一个什么式子表示

2.体验感受,观察积累: 【问题】这里有一个梨和一个苹果,如果把他们分别放在天平两边的托盘里,猜想一下会有几种情况发生?

?师生活动】学生个别回答,教师根据学生的回答板书:

(1) 梨的质量大于一个苹果的质量天平向左倾斜;

(2) 梨的质量等于一个苹果的质量天平保持平衡;

(3) 梨的质量小于一个苹果的质量天平向右倾斜 【追问】因为不知道不确定质量所以结果就会出现不同的结果。现在我告诉你它们的质量:梨60克,苹果110克,此时天平会是什么状态?能用一个式子表示出这一状态吗?

?师生活动】点名让学生个别回答,教师及时板书:60t;110

?教师评价】真好!数学语言表达就是简练。

?追问】师:如果在天平左边梨质量是a

克,用数学语言把你们认为天平的状态表达出来,写在本上。

?师生活动】学生独立完成,教师巡视。

?板书】60+at;110、60+a=110、60+a>110

?追问】这几个式子各表示什么情况?

?归纳】你看,简单的几个数学算式就表达了三种不同的情况,这就是数学语言的简约美。

3.观察算式,揭示课题

?追问】看看哪个式子表示相等?一起读出式子

?追问】仔细观察这个算式,你发现这个算式和我们以前学过的有什么不一样的地方吗?

?评价】真善于观察,今天我们就一起来学习这类问题 板书:简易方程

二、自主探究,形成概念

1.再举实例,铺垫孕伏

?问题】还是这架天平,刚才你们发现了平衡,现在教师这里有一杯500克的果汁,和一罐125克的牛奶,如果把它们分别放在天平两边会出现什么情况?

?师生活动】学生回答,教师补充。

?追问】那么你能让这架天平平衡吗?也可以用数学算式表达。

?学请预设】

方案1:在右边再放3罐。

?追问】可以吗?谁能说清楚?

?板书】500=125×4或500=125+125+125+125

?归纳】这是一种策略,改变右边的质量。受他的启发还有别的办法的吗? 方案2:刚才我还听有的同学说喝375克就行。大家说行吗?不过还真的有人喝了一口,不过这一口到底是多少我们不知道,怎么办? 【师生活动】教师引导学生用字母表示,用数学算式表示说明,写在本子上。

?师生活动】教师巡视,抽有代表性的同学上来板书

?板书】500-xt;125, 500-x="">125

?追问】哪个式子表示了天平左右两边平衡了?

500-x=125

2.观察式子,归纳定义

?问题】仔细观察下列式子,你发现了什么?

(1)500=125×4或500=125+125+125+125

(2)500-x=125

(3)60+a=110

?师生活动】学生回答,教师补充

?归纳】含有未知数的等式叫做方程。【板书】

3.分析定义,理解概念

?问题】你认为判断方程需要几个条件?

?师生活动】教师从方程的定义,引导学生回答:

(1)表示相等的式子。

(2)必须含有字母(未知数)。

三、牛刀小试,巩固概念

1.试一试,观察天平判断是否可以写出方程,说明理由。

2.做一做:下面哪些是式子是方程?

3.举一举:你会自己举出一些是方程的式子活例子

(1)小红的年龄是x岁,老师比小明大30岁,今年老师的年龄是38岁。

(2)逐个呈现3个足球,每个a元,共花180元。你能用方程表示吗?

(1)小芳一个星期共跑了2.8km,每天跑s米。

(2)一盒水果糖共a颗,平均分给25个小朋友,每人得3颗,正好分完。

(3)小芳集邮共60张,小明集邮共48张。小芳给了小明x张后两人的集邮张数一样多。

四、总结提升

数学史:三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中记载了用一组方程解决实际问题的史料。直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。

师:同学们,今天这节课上大家都积极的进行了思考,从中你学到了什么?还想知道些有关方程的哪些知识?

小学数学方程的教案篇6

教学过程:

一、课前复习

1、判断下面各式是不是方程

30+x=150 x-54>80 65—45=20 7x=56

2、根据题意列方程

(1)山东省高中学历的人数是1002万人,是大专学历的3倍,大专学历的人数是x万人。

(2)山东省总人口是9079万人,其中男人4595万人,女人x万人

(3)山东省乡村人口是5629万人,比城镇人口多2179万人,城镇人口是x万人。

二、合作探索:

1、出示情景图:让学生看图及下面的信息,你知道了哪些信息?(2004年6月1日黔金丝猴数量已从1993年的600多只,增加到860只。)根据信息你能提出什么问题?

2、提出问题,解决问题。根据学生的回答,教师把问题板书出来:2004年比1993年大约增加了多少只黔金丝猴?

根据提出的问题,同学讨论应该怎样列式解答。放手让学生自己解答,个别学生老师指导。指名回答。用算术方法解答:860—600=260(只)除了算术方法你能根据题意列出含有未知数的方程吗?具有怎样的等量关系?(1993年的只数+增加的只数=2004年的只数。用x表示增加的只数,可列方程:600+x=860)

3、合作探索,找出解决问题的方法。

这个方程怎样求出x呢?

让学生讨论找出解决问题的方法。我们可以借助天平来研究一下:在天平的左边放上一瓶啤酒,要使天平平衡右边也要放上同等重量的东西,天平才能平衡。如果在左边加上10克重的物体,要使天平平衡右边也要加上10克重的物体,反过来在左边减去10克的物体,要使天平平衡右边也要减去10克的物体,看教材62页图,这说明了什么?(说明了等式的两边同时加上或减去同一个数,等式仍然成立。)

同桌看图讨论:天平左边的盘子里是x,右边的盘子里是20 ,这时天平平衡那么说明了什么呢?(说明x=20的时候才能使天平平衡,也就是等号两边正好相等。

师小结:我们可以借助这个发现来求出方程里面的未知数x。我们把使方程左右两边相等的.未知数就叫做方程的解,x=10是x+10=10+10的解,而求方程的解的过程叫做解方程。解方程和方程的解是两个不同的概念。

4、解方程,体会解方程和方程的解有什么不同?

我们来解600+x=860这个方程,教师一边板书,一边指出解方程的步骤;

先写个“解”字,然后根据等式两边同时减去一个数等式仍然成立,同时减去600,理解解方程过程的简化书写,并且解题时适当运用简化书写。

教师示范解题过程,关注“解”和“等于号”书写要求。

指导检验:x=860是不是正确答案呢?如何检验?教师板书检验过程。

5、课堂练习:出示:x―30=80 反馈,关注书写过程并说说检验过程。

三、综合练习:

1、完成书本第64页自主练习1题,学生完成后同桌交流

2、括号里哪一个x的制式方程的解?

43+x=62 (x=105 x=19) x-56=37 (x=19 x=93)

先独立思考,学生回答,并说说自己的想法

3、看图列方程。

出示自主练习的第2题,学生看图列式。

提问:什么是等式?什么是方程?解出上述方程。

四、学习回顾:

通过学习,你知道了什么?有哪些收获?个人课堂学习表现如何

学生选择两题(加法方程和减法方程各一个)独立完成,要求写出检验过程,反馈计算情况。

作业设计:

1、基础作业:自主练习1、2、3

2、拓展作业:一点通:部分练习

板书设计:

解简易方程

解;:设大约增加了x只黔金猴。

600 + x = 860

600+x-600 = 860-600

x =260

检验:方程左边=600+x

=600+260

=860

=方程右边

所以,x=260是方程600+x=860的解

小学数学方程的教案篇7

教学目标:

1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

2、利用探索发现的等式的性质,解决简单的方程。

3、经历了从生活情境的方程模型的建构过程。

4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

教学重难点:

重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

难点:推导等式性质(一)。

教学准备:

一架天平、课件及班班通

教学过程:

一、创设情境,以情激趣

师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?

学生讨论纷纷。

师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

二、运用教具,探究新知

(一)等式两边都加上一个数

1、课件出示天平

怎样看出天平平衡?如果天平平衡,则说明什么?

学生回答。

2、出示摆有砝码的天平

操作、演示、讨论、板书:

5=5 5+2=5+2

x=10 x+5=15

观察等式,发现什么规律?

3、探索规律

初次感知:等式两边都加上同一个数,等式仍然成立。

再次感知:举例验证。

(二)等式两边都减去同一个数

观察课件,你又发现了什么?

学生汇报师板书:

x+2=10

x+2-2=10-2

x =8

(三)运用规律,解方程

三、巩固练习

1、完成课本68页“练一练”第2题

先说出数量关系,再列式解答。

2、小组合作完成69页“练一练”第3题。

完成后汇报,集体订正。

四、课堂小结

这节课你学到了什么?学生交流总结。

板书设计: 解方程(一)

x+2=10

解: x+2-2=10-2 ( 方程两边都减去2)

x =8